
PHYSICAL REVIEW E, VOLUME 65, 041505
Normal stresses at the gelation transition

Kurt Broderix,* Peter Müller,† and Annette Zippelius‡
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A simple Rouse-type model, generalized to incorporate the effects of chemical cross-links, is used to obtain
a theoretical prediction for the critical behavior of the normal-stress coefficientsC1 and C2 in polymeric
liquids when approaching the gelation transition from the sol side. While the exact calculation showsC2

[0, a typical result for these types of models, an additional scaling ansatz is used to demonstrate thatC1

diverges with a critical exponentl 5k1z. Here,k denotes the critical exponent of the shear viscosity andz the
exponent governing the divergence of the time scale in the Kohlrausch decay of the shear-stress relaxation
function. For cross-links distributed according to mean-field percolation, this scaling relation yieldsl 53, in
accordance with an exact expression for the first normal-stress coefficient based on a replica calculation.
Alternatively, using three-dimensional percolation for the cross-link ensemble we find the valuel '4.9.
Results on time-dependent normal-stress response are also presented.

DOI: 10.1103/PhysRevE.65.041505 PACS number~s!: 61.20.2p, 64.60.Ht, 61.25.Hq
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I. INTRODUCTION

Chemical gelation is the process of randomly introduc
cross-links between the constitutents of a~macro! molecular
fluid. One way to investigate the effects of the cross-links
the fluid dynamics consists in measuring the stresses tha
cross-linked fluid builds up when subjected to a simple sh
flow. For an incompressible, isotropic fluid one can expe
mentally access@1# three independent components of t
stress tensors: the shear stresssxy and the first and secon
normal-stress differencessxx2syy andsyy2szz. For static
shear flows these give rise to three independent mat
functions: the shear viscosityh and the first and secon
normal-stress coefficientsC1 and C2. Generally speaking
both Newtonian and non-Newtonian fluids possess a non
nishing shear viscosity. But, whereas for a Newtonian fl
both C1 and C2 are always zero, it is precisely the no
vanishing ofC1 that explains a number of characteristic e
fects known for example polymeric liquids@2#, see also Sec
2.3 in Ref.@1#. On the other hand, even for non-Newtoni
fluids C2 is typically found to be very small as compared
C1, and the ‘‘Weissenberg hypothesis,’’C250, is a good
approximation in these cases@2#. It also seems thatC2 is not
as well-investigated experimentally asC1.

In the context of gelation one is particularly interested
the dependence of these stresses on the cross-link conce
tion c. Universal critical behavior is expected to occur at t
gelation transition, that is, at the critical concentrationccrit ,
where the fluid~sol! undergoes a phase change into an am
phous solid state~gel!. As far as shear stress is concerne
there exist numerous experimental investigations on
static shear viscosity and on the time-dependent shear-st
relaxation function. The experimentally measured values
the critical exponentk, which governs the algebraic dive
gence of the shear viscosity when approachingccrit from the
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sol side, scatter considerably and are found in the rangk
'0.6–1.7, see e.g. Refs.@3–8#. The origin of this wide
spread is controversially discussed and not yet underst
From a theoretical point of view there exists a bunch
competing and partially contradicting scaling relations th
expressk in terms of percolation exponents. Each of the
relies on heuristic arguments whose validity is mostly u
clear. We refer the reader to@9,10# for a summary and refer
ences. Here we only mention the scaling relationk52n
2b that was first proposed by de Gennes@11# and rederived
by many others. Erroneously, it is generally referred to as
‘‘Rouse expression’’ for the viscosity exponent. Here,n is
the exponent governing the divergence of the correlat
length andb is associated with the gel fraction. For thre
dimensional bond percolation one would get the value (n
2b)ud53'1.35. Recently, the viscosity wasexactly deter-
mined within the Rouse model for gelation in Refs.@9,10#.
The analysis disproves the above result and shows that

k5f2b ~1!

is the true scaling relation valid for Rouse dynamics. Heref
denotes the first crossover exponent of a corresponding
dom resistor network@12,13#. When inserting high-precision
data @14,15# for f and b obtained from three-dimensiona
bond percolation, the true Rouse value of the viscosity ex
nent turns out to be (f2b)ud53'0.71 and agrees with
simulations@16# on a similar model. The discrepancy to d
Gennes’ result above can be attributed to the neglect of
multifractal nature of percolation clusters in Ref.@11#.
Amazingly, the true Rouse valuekud53'0.71 differs only
little from that of another proposal,k5s, by de Gennes@17#,
where he alluded to an analogy to the conductivity expon
sud53'0.73 of an electrical network consisting of a rando
mixture of superconductors and normal conductors. T
close agreement, however, is coincidental, as can be
from corresponding results in two dimensions.

In contrast, we are not aware of any experimental or t
oretical studies concerning the dependence on the cross
concentrationc of normal stresses near the gelation tran
©2002 The American Physical Society05-1
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tion. This seems all the more surprising since there e
many experiments@18–21# on both the shear-rate depe
dence of normal stresses in entangled or~temporarily! cross-
linked polymeric liquids in order to explain shear-thinning
shear-thickening phenomena and on the time dependen
the normal-stress response to particular shapes of s
strain. Theoretical explanations of these experimental fi
ings mainly rely on the analysis of transient network mode
see e.g. Refs.@22–25#.

Even though Rouse-type models incorporate no ot
physical interactions between monomers apart from conn
tivity, they serve as a standard theoretical reference in te
of which experimental data are frequently interpreted. The
fore, it is important to test their predictions as accurately
possible. In this paper, we use the same generalized Ro
type model as in Refs.@9,10,26# to predict the critical behav
ior of the normal-stress coefficientsC1 and C2 when ap-
proaching the gelation transition from the sol side. With
this model it will turn out thatC2 vanishes for allc and that
C1 diverges with a critical exponent

l 5k1z ~2!

when approachingccrit from the sol side. Here,z denotes the
exponent governing the divergence of the time scale in
Kohlrausch decay of the shear-stress relaxation function.
cross-links distributed according to mean-field percolat
~also called ‘‘classical theory’’!, this scaling relation yields
l 53, in accordance with an exact expression forC1 based
on a replica calculation. Alternatively~and more realisti-
cally!, using three-dimensional percolation for the cross-l
ensemble we find the valuel '4.9. Thus, the model predict
a much more pronounced divergence ofC1 as compared to
h so thatC1 may serve as a sensitive indicator for the ge
tion transition. We also derive results on the time-depend
normal-stress response. In particular, the Lodge-Meiss
rule, see, e.g., Sec. 3.4.e in Ref.@1#, is shown to hold for
normal-stress relaxation after a sudden shearing displ
ment.

We hope that these theoretical investigations motiv
corresponding experimental work in order to develop m
insight on normal stresses in gelling polymeric liquids.

II. MODEL

We follow a semimicroscopic approach to gelation bas
on a Rouse-type model forN monomers. The monomers a
treated as point particles with positionsRi(t), i 51, . . . ,N,
in three-dimensional space. The motion of the monomer
constrained byM randomly chosen, harmonic cross-link
that connect the pairs (i e ,i e8), e51, . . . ,M , of monomers
and give rise to the potential energy

Uª

3

2a2 (
e51

M

le~Ri e
2Ri

e8
!25..

3

2a2 (
i , j

N

G i j Ri•Rj . ~3!

Here, the fixed lengtha.0 models the overall inverse cou
pling strength, whereas the individual coupling constantsle
are chosen at random. Quite often, only the special casle
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51 has been considered previously. The second equalit
Eq. ~3! introduces the randomN3N connectivity matrix,
which encodes all properties of a given cross-link realizati

Following Refs.@27–29# we employ a simple relaxationa
dynamics

z@] tRi
a~ t !2vext

a
„Ri~ t !,t…#52

]U

]Ri
a

~ t !1j i
a~ t ! ~4!

without inertial term to describe the motion of the monome
in the externally applied velocity field

vext
a ~r ,t !ªdaxk~ t !y ~5!

with a time-dependent shear ratek(t), see also Fig. 1. Here
Greek indices label Cartesian coordinatesx, y, or z. A friction
force with friction constantz applies if the velocity of a
monomer deviates from the externally applied flow field. T
cross-links exert a force2]U/]Ri on the monomers, in ad
dition to a random, fluctuating thermal-noise force obeyi
Gaussian statistics with zero mean and covaria
^j i

a(t)j j
b(t8)&52zdabd i j d(t2t8). Note that we have chose

units in which the inverse temperature is equal to one. Gi
the shear flow~5!, the equation of motion~4! is linear and
can be solved exactly for each realization of the therm
noise@10#.

To complete the description of the dynamic model, w
have to specify the statistical ensemble that determines
realizations of the cross-links. We will distinguish two case

~i! Mean-field percolation~also called ‘‘classical theory’’!:
each pair of monomers is chosen independently with eq
probabilityM /N2, irrespectively of the monomer positions i
space. As a function of the cross-link concentrationc
ªM /N, the system undergoes a percolation transition a
critical concentrationccrit5

1
2 . For c,ccrit there is no macro-

scopic cluster, and almost all clusters are trees@30,31#.
~ii ! Three-dimensional bond percolation@15,32#.
For either case we assume the random coupling const

le to be distributed independently of the cross-link config
ration, as well as independently of each other with the sa
~smooth! probability distribution p(l). Moreover, suffi-
ciently high inverse moments

PnªE
0

`

dll2np~l! ~6!

FIG. 1. Homogeneous linear shear flow~5!.
5-2
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NORMAL STRESSES AT THE GELATION TRANSITION PHYSICAL REVIEW E65 041505
of le shall exist.
The combined average over cross-link configurations

random coupling constants will be denoted by an overb
Using this notation, we implicitly assume that the mac
scopic limit N→`, M→`, M /N→c is carried out, too.

Before turning to the analysis of the model, we would li
to comment on the fact that it describes the random cro
linking of single monomers rather than of preformed po
mers. However, this does not mean that the applicability
the model is limited to the description of random netwo
built up by polycondensation from small structural units. I
deed, we expect from universality that details at small len
scales are irrelevant for the true critical behavior at the g
tion transition so that these results will also hold for rand
network built from arbitrary macromolecules, as is the ca
in vulcanization, for example. This general universality arg
ment was confirmed@10# by explicit computations of the
critical behavior of the shear viscosity with the mean-fie
distribution of cross-links.

III. STRESS TENSOR AND NORMAL-STRESS
COEFFICIENTS

Due to the externally applied shear flow the cross-lin
exert shear stress on the polymer system, whose tensor
ponents are given in terms of a force-position correlat
@27,28#,

sab~ t !5 lim
t0→2`

r0

N (
i 51

N K ]U

]Ri
a

~ t !Ri
b~ t !L . ~7!

Here,r0 denotes the density of monomers. In Eq.~7! one has
to insert the explicitly known@10# solutions Ri(t) of the
Rouse equation~4! at time t with initial dataRi(t0) at time
t0. In order to ensure that the thermal-noise average all
for the description of a possible stationary state of the sys
at finite timest, the time evolution is chosen to start in th
infinite past,t0→2`, thereby losing all transient effects th
stem from the initial data. This yields@10# for the stress
tensor

s~ t !5x~0!11E
2`

t

dt8x~ t2t8!k~ t8!

3S 2E
t8

t

dsk~s! 1 0

1 0 0

0 0 0

D , ~8!

where 1 denotes the 333 unit matrix and the stress
relaxation function is given by

x~ t !ª
r0

N
TrF ~12E0!expS 2

6t

za2
G D G . ~9!

The symbol Tr in Eq.~9! stands for the trace overN3N
matrices, andE0 denotes the projector on the space of ze
eigenvalues ofG, which correspond to translations of who
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clusters. The associated eigenvectors are constant w
each cluster and zero outside@10,33#. Within the simple
Rouse model the zero eigenvalues do not contribute to s
relaxation because there is no force acting between diffe
clusters. The only contribution to stress relaxation is due
deformations of the clusters.

For a time-independent shear ratek(t)[k it is customary
to define a first and second normal-stress coefficient by

C1ª
sxx2syy

r0k2
, C2ª

syy2szz

r0k2
. ~10!

One deduces immediately from Eq.~8! that

C250, ~11!

a characteristic result for Rouse-type models. In contrast,
first normal-stress coefficientC1 is nonzero

C15
1

2 S za2

3 D 2 1

N
TrS 12E0

G2 D ~12!

and independent of the shear ratek.
For a macroscopic systemC1 is expected to be a self

averaging quantity. Therefore, we will calculate the disord
average of Eq.~12! over all cross-link realizations and a
cross-link strengths. To do so it is convenient to introduce
averaged density

D~g!:5
1

N
Tr@~12E0!d~g2G!# ~13!

of nonzero eigenvalues ofG. Physically,D describes the dis-
tribution of relaxation rates in the network in units o
6/(za2), as is evident from the representation

x̄~ t !5r0E
0

`

dg expH 2
6tg

za2J D~g! ~14!

of the disorder average of the stress-relaxation function~9!.
Various properties of the eigenvalue densityD are discussed

in detail in Ref.@26#. The averageC̄1 now appears as the
second inverse moment ofD,

C̄15
1

2 S za2

3 D 2E
0

`

dg
D~g!

g2
, ~15!

while the disorder-averaged static shear viscosityh̄
ªs̄xy /(r0 k) is determined@9,10# by the first inverse mo-
ment

h̄5
1

r0
E

0

`

dtx̄~ t !5
za2

6 E
0

`

dg
D~g!

g
. ~16!

At this point one can already see thatC̄1 serves as a
sensitive indicator for the gelation transition. Indeed, t
Jensen inequality@34# implies
5-3
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C̄1>
2~ h̄ !2

E
0

`

dgD~g!

>2~ h̄ !2, ~17!

and hence

l >2k ~18!

with l denoting the critical exponent ofC̄1;(ccrit2c)2l

andk denoting that ofh̄;(ccrit2c)2k.
In the two following sections we will determine the pr

cise Rouse value ofl for the two different types of cross
link ensembles described above.

IV. MEAN-FIELD PERCOLATION

For mean-field random graphs~i! the second inverse mo
ment of the eigenvalue densityD was calculated in Eq.~38!
of Ref. @26# with the help of a replica approach. This give
rise to the exact result

C̄15
1

2 S za2

3 D 2

cF2
8c326c225c11

30c~122c!3
P1

22
4c223c21

24c~122c!2
P2

1
5P224P1

2

240c2
ln~122c!G , ~19!

which is valid for all 0,c,ccrit5
1
2 . The inverse moments

Pn were defined in Eq.~6!. From Eq.~19! we read off the
critical divergence

C̄1;S za2

3 D 2 P1
2

240
«23, «ªccrit2c↓0 ~20!

at the gelation transition, and hence the critical exponen

l 53. ~21!

For c→0 one expands

C̄15S za2

3 D 2 P2

8
c1O~c2!. ~22!

Figure 2 displaysC̄1 in units of (za2/3)2 as a function ofc
for the special caseP15P251.

It is the merit of the mean-field percolation ensemble t
it allows for a variety of exact analytical calculations. How
ever, since the probability for a cross-link to occur does
depend on the monomers’ positions in space, this ensemb
believed to provide a fairly unrealistic description for thre
dimensional gels. For this reason we consider an alterna
cross-link ensemble in the following section, which has be
successfully used@35# to explain static properties of polyme
systems.
04150
t

t
is

-
ve
n

V. THREE-DIMENSIONAL BOND PERCOLATION

For this ensemble of cross-links the second inverse m
ment ~15! of the eigenvalue densityD«—note that in this
section we emphasize the dependence on«ªccrit2c in the
notation of various quantities—is not known analytically.
order to proceed we assume thatD« follows a scaling law

D«~g!;gD21f @g* ~«!/g# ~23!

close to the critical point and for small enoughg. It is deter-
mined by a typical relaxation rateg* («);«z, which van-
ishes when approaching the critical point, and a scaling fu
tion f (x) that tends to a nonzero constant forx→0 and
decays faster than any inverse polynomial forx→`. In par-
ticular, this gives the power-law behaviorD«50(g);gD21

asymptotically forg→0 at criticality, in agreement with ex
periments@36,37#. The measured exponent values, howev
scatter considerably,D'0.4–0.8, and seem to depend on t
mass of the cross-linked molecules@38#. Note that on genera
grounds the exponentD has to be positive, because othe
wiseD«50(g) would not be integrable atg50, in contradic-
tion to the definition~13!. The scaling law~23! yields, via
the Laplace transform~14!, the scaling law

x̄«~ t !;«zDg@ t/t* ~«!# ~24!

for the long-time behavior of the stress-relaxation functio
Here, the scaling function obeysg(x);x2D for x→0 and
the typical relaxation timet* («)ªza2/@6g* («)#;«2z di-
verges when approaching the critical point. Precisely at
critical point one finds an algebraic long-time dec
x̄«50(t);t2D. Dynamical scaling relatesD to z and to the
exponentk of the shear viscosity

D5~z2k!/z, ~25!

see e.g. Refs.@26,38#. For x→` the scaling functiong(x)
has to decay like a stretched exponential in order to acc
modate the experimentally found@39# Kohlrausch decay

FIG. 2. First normal-stress coefficient~19! in units of (za2/3)2

as a function ofc for P15P251.
5-4
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x̄«.0~ t !;exp$2@ t/t* ~«!#a% ~26!

of the stress-relaxation function in the sol phase away fr
criticality, wherea is a noncritical and possibly nonunivers
exponent. We will return to Eq.~26! in the following section.

From Eqs.~15!, ~23!, and ~25! we deduceC̄1;«2l for
«↓0 with an exponent given by the scaling relation

l 5k1z5k
22D

12D
. ~27!

SinceD.0, we havez.k and the scaling relation~27! is
compatible with the inequality~18!. Equation~27! was ob-
tained previously in Ref.@40# from a model density of relax
ation times with a sharp upper cutoff.

According to Eq.~1! the viscosity exponentk for the
Rouse-type model under consideration is given byf2b and
takes the valuek'0.71, when using three-dimensional bo
percolation to generate the cross-link ensemble. Concer
D, we are only aware of Ref.@26#, where this exponent is
determined for the Rouse model at hand without any furt
assumptions. It was done by numerical computations of
eigenvalue density~13! and yieldsD'0.83. But, as com-
pared to the values forf and b, we suspect the numerica
accuracy of the result forD to be rather poor due to finite
size effects. Yet, using this value, Eq.~27! predicts

l '4.9 ~28!

for the exponent of the first normal-stress coefficientC̄1. If,
instead, one ignored themultifractal structure of percolation
clusters in employing the wrong scaling relationsk52n
2b andt5dn, wheret is the critical exponent of the elasti
modulus in the gel phase, one would arrive@41# at the value
D'0.66. This would yield the considerably lower resultl
'2.8. Thus, it is of importance to improve the accuracy
the exact numerical computation ofD within the Rouse
model.

Finally, we would like to point out that for mean-fiel
percolation the scaling relation~27! is consistent with the
exact result presented in the preceding section. For, in
case the model yieldsk50 @9,10#, z53, andD51 @26#, and
thus ~27! gives l 53 in accordance with Eq.~21!.

VI. TIME-DEPENDENT NORMAL-STRESS RESPONSE

First, let us focus on the normal-stress response to
inception of a steady shear flowk(t)5k0Q(t). HereQ de-
h,

04150
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notes the Heaviside unit step function. For each realiza
of the cross-links Eq.~8! leads to

N1~ t !ªsxx~ t !2syy~ t !52k0
2E

0

t

dt8t8x~ t8! ~29!

in accordance with the principle of frame invariance@42#.
Equations~9! and~12! then imply that for all cross-link con-
centrations belowccrit the first normal-stress difference in
creases towards its steady-state value like a stretched e
nential

N̄1~ t !5r0k0
2C̄122k0

2E
t

`

dt8t8x̄~ t8! ~30!

with the same exponenta as the shear-relaxation functio
~26!. In contrast, forc5ccrit we deduce from Eq.~29! the
algebraic growthN̄1(t);t22D for long times, a result al-
ready known on a more phenomenological basis@38#.

Second, we consider a sudden shearing displacem
k(t)5Ed(t), where d denotes the Dirac-delta function
From Eq.~8! we infer

N1~ t !5E
0

`

dt8 x~ t8!
d

dt8
F E

t2t8

t

dsk~s!G2

5E2x~ t !,

~31!

which, after averaging over disorder, amounts to the Ko
rausch decay~26! in the long-time limit for systems below
the critical point, respectively, to the algebraic decayt2D for
c5ccrit . Upon comparing~31! to the corresponding resu
sxy(t)5Ex(t) for shear stress, the Lodge-Meissner ru
N1(t)/sxy(t)5E, see e.g., Sec. 3.4.e in Ref.@1#, holds for
each cross-link realization in this Rouse-type model.

Third, we consider the double-step strain flowk(t)
5Ed(t)2Ed(t2t1) with t.t1.0. In this case one can
verify in an analogous manner the corresponding relat
N1(t)/sxy(t)52E, which is known @21# to be valid for
class I simple fluids.

VII. OUTLOOK

We hope to stimulate detailed experimental investigatio
on the cross-link dependence of normal stresses in polym
liquids close to the gelation transition. If such experimen
results were at hand, one could judge the effects of the s
plifications that underlie the above Rouse-type model, s
as the neglect of the excluded-volume interaction and of
hydrodynamic interaction.
-
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